Testing the Portfolio Rebalancing Channel of Quantitative Easing Julia Selgrad

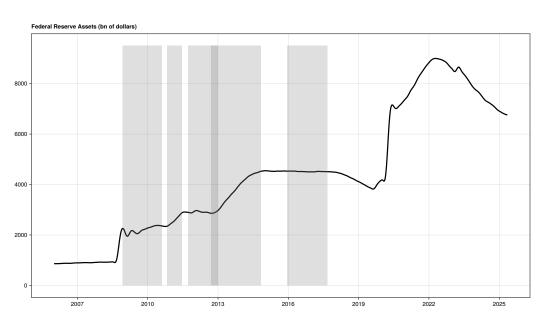
University of Minnesota Asset Pricing Conference
Discussion – May 2025

Erik Loualiche – University of Minnesota

What is QE

Reinvest agency MBS/debt in MBS

Does QE Matter?


Treasury Market

- 25t outstanding
- 2t issued / year; 5t issued in 2021
- 1t traded / day

Quantitative Easing

- 4t in open market operations before covid plus signalling!
- Treasury and MBS (2/3, 1/3 as of 2024 HR41)
- Spread over more than 10 years

It keeps going...

Ask the Expert

The channels of QE Transmission

"It works in practice, but does it work in theory?"

- Portfolio rebalancing
 - Risk premium effects
 - Corporate bond transmission
- Expectations Channel
- Credit Channel

This Paper

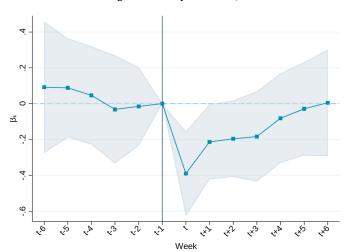
- Find a QE shock: change in the residual supply of some treasury assets
 - At the bond level, at fund level
- Effect on prices
 - How does the price of the shocked bond move?
 - ▶ How does the price of closely related assets respond? Propagation to corporates.
- Real effects

QE Shock

■ Shock is when the Fed does not buy what a optimizing trader would expect

$$Shock_i = Real\ World\ Fed_i - Optimizing\ Fed\ Model_i$$

■ Units of the shock are normalized by market size:

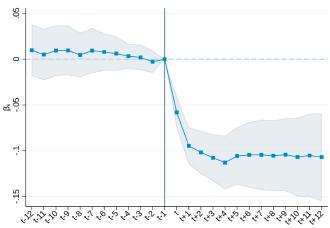

$$\mathsf{QEShock}_i = \frac{\sum_{\mathsf{QE \ operations}} \mathsf{Real \ World \ Fed}_i - \mathsf{Optimizing \ Fed \ Model}_i}{\mathsf{Treasury \ Coupons \ Outstanding}}$$

QE Shock: the regressions

Shock on yield

$$\Delta y = \beta \cdot \mathsf{QE} \; \mathsf{shock}$$

Yield Changes in Treasurys Around QE Shocks



QE Shock: the regressions

Shock on mutual fund holdings

$$\Delta$$
Holdings = $\beta \cdot QE$ shock

Active Rebalancing by Funds into Fed-Purchased Treasurys around QE Shocks

QE Shock: the regressions

Shock on mutual fund holdings: different units

 Δ Holdings = $\beta \cdot (yield from first stage)$

Active Rebalancing by Funds into Treasurys: Yield Changes

	$\Delta Holdings$
$\Delta \widehat{y}$	0.016**
	(0.008)
Maturity FEs	✓
Calendar Time FEs	\checkmark
R^2	0.229
N	3,776

Vayanos-Vila model

- Three agents trading two different characteristics: duration and credit
 - Long vs. Short-term Treasury
 - Corporate vs. Treasury
- Preferred habitat: nest within a specific maturity
- Arbitrageurs
- Residuals: fixed demand curve for corporate

Preferred habitat investors

- Rebalance between treasury and corporates within a maturity
- Demand units: level on log price

$$\begin{bmatrix}
\alpha(\tau=1) & \beta(\tau=1) \\
\tilde{\alpha}(\tau=1) & \tilde{\beta}(\tau=1)
\end{bmatrix}$$

$$\begin{bmatrix}
\varepsilon_{\tau=T-1} \\
\varepsilon_{\tau} \\
\varepsilon_{\tau} \end{bmatrix}$$

Treasury abitrageurs

Arbitrage the yield curve

$$\left(\begin{array}{c} \left[\mathcal{E}^{\mathsf{TR}}(\tau)\right] \begin{bmatrix} \mathbf{0} \end{bmatrix} \\ \left[\mathbf{0}\right] \begin{bmatrix} \mathbf{0} \end{bmatrix} \end{array}\right)$$

Residual Corporate Bond Demand

Fixed residual supply curve on the coroporate bond

$$\left(\begin{array}{ccc} \gamma & [\mathbf{0}] \\ [\mathbf{0}] & [\mathbf{0}] \end{array} \right)_{\tau=1}, \quad \dots \quad , \left(\begin{array}{ccc} \gamma & [\mathbf{0}] \\ [\mathbf{0}] & [\mathbf{0}] \end{array} \right)_{\tau=N}$$

Cross-sectional regressions only give us relative elasticities

- In the model we cannot directly estimate preferred habitat elasticity
 - only estimate $\alpha \hat{\beta}$ for each maturity τ
- Some model restrictions:
 - One parameter for own elasticity across maturities
 - One parameter for the cross-elasticity of substitution
 - Still N residual supply curves from corporate bond providers

Model regressions: identify the whole elasticity matrix

$$\begin{split} \frac{\overline{\partial \tilde{Z}_{t}^{(\tau^{*})}}}{\frac{\partial QE_{t}}{\partial QE_{t}}} - \frac{\overline{\partial \tilde{Z}_{t}^{(\tau)}}}{\frac{\partial Z_{t}^{(\tau)}}{\partial QE_{t}}} &= \frac{\overline{d(-\tilde{\alpha}(\tau^{*})log\tilde{P}_{t}^{(\tau^{*})} + \tilde{\beta}(\tau^{*})logP_{t}^{(\tau^{*})})} - \overline{d(-\tilde{\alpha}(\tau)log\tilde{P}_{t}^{(\tau)} + \tilde{\beta}(\tau)logP_{t}^{(\tau)})}}{d(-\alpha(\tau^{*})logP_{t}^{(\tau^{*})} + \beta(\tau^{*})log\tilde{P}_{t}^{(\tau^{*})}) - \overline{d(-\alpha(\tau)logP_{t}^{(\tau)} + \beta(\tau)log\tilde{P}_{t}^{(\tau)})}}\\ &= \frac{\overline{d(-\tilde{\alpha}(\tau^{*})logP_{t}^{(\tau^{*})} + \beta(\tau^{*})log\tilde{P}_{t}^{(\tau^{*})})} - \overline{d(-\alpha(\tau)logP_{t}^{(\tau)} + \beta(\tau)log\tilde{P}_{t}^{(\tau)})}}{\overline{d(-\tilde{\alpha}(\tau^{*})(-\tilde{A}(\tau^{*})s_{t} - \tilde{C}(\tau^{*})) + \tilde{\beta}(\tau^{*})(-A(\tau^{*})s_{t} - C(\tau^{*})))}}\\ &= \frac{-\overline{d(-\tilde{\alpha}(\tau)(-\tilde{A}(\tau^{*})s_{t} - \tilde{C}(\tau^{*})) + \tilde{\beta}(\tau)(-A(\tau^{*})s_{t} - C(\tau^{*})))}}{\overline{d(-\alpha(\tau^{*})(-A(\tau^{*})s_{t} - C(\tau^{*})) + \beta(\tau^{*})(-\tilde{A}(\tau^{*})s_{t} - \tilde{C}(\tau^{*})))}}\\ &-\overline{d(-\alpha(\tau)(-A(\tau^{*})s_{t} - C(\tau^{*})) + \beta(\tau)(-\tilde{A}(\tau^{*})s_{t} - \tilde{C}(\tau^{*})))}} \end{split}$$

Final Thoughts

Great Paper. Graduate students: go read it!

Take away

- Progress on understanding the effects of QE
- Progress on convincing shocks to estimate demand